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AssrRAcr

Simple quantum models (Einstein and Debye) of lattice heat capacity and entropy may
be used to predict the magnitude of the dependence of entropy on volume for silicate
minerals. The origins for the volume effect as well as the effect of variation in coordination
state of cation polyhedra on the thirdlaw entropy are explored and rationalized within
the framework of simple lattice-vibration theory. It is shown that Einstein and Debye
theories for solids predict a value for (05/0V)r^ of about 1.0 J'K-''cm-3, precisely the
value found from regression of a set of 60 experimentally measured entropies and volumes

of silicates and oxides. An additive model for estimating the entropies of mineral end-
members at 298 K, based upon the scheme advocated by Fyfe, Turner, and Verhoogen
(1958), but allowing for coordination changes, is developed and evaluated by multiple
regression of this body of measured data. The entropy-volume-coordination model fits

these data better than any previously published scheme and works remarkably well even
for transition metal-bearing phases when allowance for magnetic disordering is made.
Phases such as magnetite and hematite that undergo magnetic disorder at temperatures
above 298 K can be accommodated within the model by correcting for the partial disorder
at 298 K using simple Landau theory. The model predicts silicate and oxide entropies in

the system K.,O-NarO-CaO-MgO-FeO-FerO.-MnO-TiOr-AlrO3-SiO, with uncertainties
typically in the range of 0-2o/o, even for the Fe-, Mn-, and Ti-bearing phases.

INlnotucrroN

As increasing reliance is being placed on thermody-
namic modeling to interpolate and extrapolate experi-
mentally determined mineral equilibria in petrology, so
the need for reliable estimates of entropy for mineral
phases increases accordingly. While recent years have seen
a remarkable number of new precise experimental deter-
minations of the heat capacities and, by direct integra-
tion, the entropies of mineral end-members, there are still
many phases remaining that require methods of estima-
tion. The reasons for this need, which will never entirely
disappear, are (l) calorimetric determinations of entropy
require considerable effcrt and are time-consuming; (2)
often a chosen mineral end-member cannot easily be ob-
tained either in pure enough form or in sufficient quantity
for measurement; or (3) the end-members to be deter-
mined are fictive in the sense that they are not stable for
the chosen structure or composition.

In principle at least, entropies (and all other thermo-
dynamic functions) may be calculated from spectroscopic
determination of the lattice-vibration spectrum for solid
crystalline materials. Rigorous determinations have rare-
ly been attempted (but see Salje and Werneke, 1982, for
andalusite and sillimanite) although simplifications in
modeling the phonon density of states function, as in Kief-
fer (1980), have produced encouraging results. Apart from
the fact that this approach is even more labor-intensive
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than direct calorimetry and therefore unlikely to become
commonly used, there still remains the problem of un-
availability of the required material in pure form or in
the relevant structural state. The astonishing success of
Price et al. (1987) in accurately predicting the heat ca-
pacity, entropy, and compressibility of forsterite from a
set of independently derived interionic potentials holds
obvious promise for the future-if this technique be-
comes widely used (and extended to a larger system than
Mg-Si-O). However, until such time, simpler, quicker

methods must be found that aford reliable estimates of
mineral entropies and that can be based on a minimum
of measured properties.

Past efforts to find estimates of entropy have been re-
markably successful at the 5-l5o/o accuracy level, and all
involve some modification of the Newmann-Kopp rule,
which is based on the observation that heat capacities
(and therefore entropies) of complex compounds may be
estimated by summing, in stoichiometric proportions, the
heat capacities or entropies of simpler chemical entities.
Latimer (1951,1952) and Fyfe et al. (1958) used entro-
pies of the elements and of oxides respectively to estimate
entropies of more complex compounds. Fyfe et al. noted
the positive correlation between molar volume and en-
tropy and incorporated a simple volume correction factor
in their estimation scheme:

Sr: )n,S, + k(Vj - 2n,V,),
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where ,$ is the entropy (to be determined) of phase j, V,
is the molar volume of phase 7, whereas S, and V, arc
entropies and volumes of the n, oxide components I re-
quired to make up phaseT, and k is an arbitrary consmnr
determined from measurements.

Helgeson et al. (1978) improved matters somewhat by
taking structurally analogous mineral phases as compo-
nents instead of oxides; this has the advantage that dif-
ferences in coordination state between the components
and the phase "being built" are minimized. It has long
been recognized that the coordination state affects the
entropy; the difference between Al in octahedral and tet-
rahedral sites may be readily evaluated and has been used
in simple calculations (e.g., Holland and Richardson,
1979) on mineral stability. Recognizing the importance
of coordination, Robinson and Haas (1983) used multi-
ple regression to derive a set of fictive oxide components
from the available measured mineral entropies and heat
capacities. The result was a set of oxide components, in
varying coordination states, which could be summed di-
rectly to estimate the entropy of any desired oxide or
silicate. While having the advantage over the structural
analogue approach of path independence, the neglect in
Robinson and Haas's model of the volume correlation,
which was so successful in earlier approaches, makes their
method less powerful than it could have been.

It was the lack of TiOr, MnO, and Fe2O3 in the Rob-
inson and Haas scheme as well as its inability to predict
accurate entropies for common pyroxene and amphibole
components that led to the model proposed here. Some
of the more notable entropy discrepancies in the Robin-
son and Haas method (see column RH in Table 2) are
hercynite (+ll y.tq-';, cordierite (+17 J.K '), jadeite
(- 16 J.f- ';, tremolite (-21 J.K-,;, leucite (+ l2 J.K r),
pyrope (-14 J.K ,) and grossular (+43 J.K'), all of
which would cause unacceptable errors in phase-equilib-
rium calculations. The volume-corrected methods of Fyfe
et al. (1958) and Helgeson et al. (1978) generally work
quite well, and there are sound theoretical reasons for a
positive correlation between volume and entropy that
warrant a brief review before presenting the revised es-
timation method and results.

TrrB nNrnopy-voluME RELATroNsHrp REvtEwED
Although the relationship of entropy to mass is well

known and has been discussed and used by Latimer ( I 95 I,
1952), in the methods to be discussed below, fictive com-
ponents are summed to "build" mineral entropy so that
mass is conserved. In their discussions, Fyfe et al. (1958)
called upon the relation

@S/dV)r: a/0 : (dP/dT)v

to explain the positive correlation of entropy with vol-
ume and to justify the positive sign of the correlation.
While it is true that u/8, the ratio of thermal expansion
to compressibility, is generally a small positive number,
this equation does not provide a satisfying explanation of
the effect at an atomistic or structural level. The reason

for a positive correlation of entropy with volume can be
seen most easily by considering the role of lattice vibra-
tions in determining the heat capacities and entropies of
crystalline solids. The simplest quantum model for lattice
heat capacity was devised by Einstein to explain the fall
off of heat capacity to zero as the absolute zero of tem-
perature is approached. In this model the crystal is as-
sumed to be composed of 3N independent one-dimen-
sional harmonic oscillators vibrating with frequency z,
where Nis Avogadro's number. The Einstein model heat
capcity for I mol of a phase containing n atoms in its
formula unit is given by

Cr: 3nRlu'e"/(e" - l) '1,

where R is the gas constant, and u : hu/kT, .vv.rth h and
k being Planck's constant and Boltzmann's constant, re-
spectively. The entropy according to this model is

S: 3nR{lu/(e, - l) l - ln(l - e-")}.

While the heat capacity of an Einstein crystal does not
match the behavior of real crystals perfectly at low tem-
peratures, it does simulate the trend remarkably well for
a simple one-parameter model.

Next to be considered is the role of molar volume,
whose importance lies in its relationship to the term el :
hv/kT. EnlarySng the cell volume of a simple crystal whose
atoms vibrate at a characteristic frequency has the effect
of moving apart the component atoms, thus reducing their
bond stiffnesses and lowering their vibrational frequency
(in proportion to (Vo/tr)'/'). Figure I illustrates the general
dependence ofheat capacity on vibrational frequency, and
from the definition ofthe third-law entropy,

s,: J' ? or.

one can see clearly that lowering the frequency by length-
ening and weakening the bonds causes an increase in en-
tropy. To be more rigorous, C" must be converted to C,
with the relation

Cr: C, + TVu2/8,

although the difference is negligible at low temperatures
for solids.

The magnitude of the volume effect on the entropy of
an Einstein solid is given by

(A S / A V),,8 : @ u/ 0 V)(0 S / |u),n"

which, from u : uo(Vo/V)v, and the Einstein expression
above for the entropy, one finds by substitution that

(dS/dV)2,8:  nRu' / lV(e ' -  l ) ( l  -  e  f l .

In this expression, Z is the molar volume of the mineral
concerned. Evaluating this expression at 298 K for all
phases listed in Table l, the mean value of (dS/|V)r* is
found to be 1.07 + 0. 1l J.K-'.cm :. This value is a nu-
merical measure of the constant k in the Fyfe et al. en-
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tropy-estimation scheme discussed above and is in ex-
cellent agreement with the value found empirically below.

Although the above model is simple, the Einstein ap-
proximation is nevertheless remarkable in describing, with
only one adjustable parameter, the heat capacity and en-
tropy of crystals, and it should give a reliable estimate of
the volume dependence of the entropy. The relationship
of normal mode frequencies to entropy will be explored
further later, but in passing it should be noted that the
effect of volume on heat capacity will lessen at higher
temperature where thermal agitation is more pronounced
and will tend to mask the smaller volume-related effect.
It is for this reason that high-temperature heat capacities
may be modeled quite reasonably by a simple additivity
of oxides approach without consideration of the volume
coffection (as done by Berman and Brown, 1985).

It is interesting to inquire whether an increase in the
sophistication of the assumptions used alters this result,
and so the above exercise was repeated using the Debye
model for heat capacities. In place of a single frequency
to characterize the vibrational spectrum, Debye assumed
a quadratic density ofstates g(v): av2, which is the cor-
rect behavior in the low-frequency limit for a continuum,
with a cut-off value at /-"*. A similar approach to that
taken above, using the Debye (D) expression for the en-
tropy with 0r: hv^ */k expressed in parameterized form,
glves

Srrr .o:  n( l3 l4 l /0"  -  3 .81)

where the constants were determined from a least-squares
fit to the Debye entropy function at 298 K and entropy
is in J.K-' mol '; hence,

(AS/AV), ,s :  ( ,S + 3.81n) /3V,

which on evaluation (Table 1) gives a slightly lower value
of (dS/dZ)rn, : 0.93 + 0.10 J'K ' 'cm 3. Given that the
Debye approximation is often used best in the low-tem-
perature limit and the Einstein model often works well
for approximating the high-temperature behavior, an av-
erage might be appropriate, and a value of unity for the
proportionality constant k is accepted, as predicted from
simple lattice-vibration models.

Trrs nnLlrroNSHIp BETwEEN ENTROPY AND
COORDINATION

Having examined the entropy-volume relationship, I
now turn to look briefly at the role ofcoordination state.
As a simple example, I will take the CarSiOo minerals
larnite and calcium olivine that have entropy values of
12'7.6 J'K' and 120.5 J'K ', respectively, despite larnite
having the smaller volume. Clearly larnite owes its higher
entropy to the distorted and much larger site for one of
its two Ca ions (see Table 1), while presumably it man-
ages to keep its volume reduced by a suitable packing
arrangement of alternating large (M2) and small (Ml) Ca
sites. Thus the dominant control of the entropy difference
between Ca olivine and larnite lies in the coordination
change from 6 to 8 one of its Ca sites, as would be pre-
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Fig. 1. Heat capacities calculated from the Debye theory us-
ing three values for the Debye temperature 0o to show the effect
of varying the vibrational frequency (0o : hv/k). Filled circles
are experimentally measured C, data for forsterite'

dicted by the simple vibrational models discussed above.
Kiefer (1982) has drawn attention to the fact that the

entropy is sensitive to the position of the lowest-frequen-
cy optic modes, which are those usually associated with

internal vibrational modes of cation polyhedra in sili-
cates, and one should thus expect, as a general rule, that

increasing coordination state will lead to an increase in

entropy.
Exceptions to this simple notion are numerous, and it

is often impossible to apply it straightforwardly to com-
plex silicates because in many instances it is not the in-

ternal modes associated with a coordination polyhedron

that dominate the low-temperature heat capacity, but the

external modes associated with the linkages between the
polyhedra. A classic example is the case of the three alu-

minosilicite polymorphs kyanite, andalusite, and silli-
manite. All three minerals contain SiOo tetrahedra and

chains ofedge-connected AlOu octahedra, but an extra Al

in the formula occurs in 6-fold octahedra in kyanite, in

irregular 5-fold coordinated polyhedra in andalusite, and
in 4-fold tetrahedra in sillimanite. The entropies at 298

Kare 82.3.  91.4.  and 95.8 J 'K ' 'mol- ' ,  respect ive ly ;  thus
it is usually argued that the entropy increase in these min-

erals occurs in response to reduction in the coordination
state. However, in these polymorphs the entropies in-

crease in the reverse order from that predicted by the

frequencies ofthe internal vibrational modes; the average
polyhedral Al-O bond is shortest and stiffest in the tet-
rahedral sites (sillimanite) and longest in the octahedral
sites (as in kyanite), yet Kiefer (1982) noted that the low-

est-frequency optic mode occurs at I l5 cm-r in silliman-
ite, at 156 cm-' in andalusite, and at 237 cm ' in kyanite.

Thus it is reasonable to infer that it is not the internal
vibrational modes of the characteristic Al polyhedra in

these silicates that dominate the sequence of lowest optic
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TABLE 1' Entropy, volume, and composition data for phases used in the regression

Phase. St Ref $ Phase- tr- q Ref g

Magnetite (mt)
FerO", FeO

Hematite (hem)
Fe203

Titanomagnetite (Timt)
2FeO, t6rTiOz

Calcium ferrite (CaFt)
I6rCaO, FerO3

Dicalcium ferrite (DCFt)
2t6loao, FerO3

Acmite (acm)
0 5r8rNaro, 0.5FerO3, 2rorSiO,

Jadeite (id)
0.5l8lNaro, 0 5t6lAlro3, 2l4rSiO,

llmenite (ilm)
FeO, t6tTiOe

Spinel (sp)
rrMgO, tor4;,9.

Rutile (ru)
16lTiOz

Tridymite (trid)
tatSiOz

Manganosite (mang)
rorMnO

Lime (lime)
16rCaO

Periclase (per)
r6tMgo

Corundum (cor)
t6tAlzOg

Hercynite (herc)
FeO, tel41r9.

Hedenbergite (hed)
clcao, Feo, 2r1tsio,

Ferrosilite (ts)
2FeO, t.tSiOz

Kyanite (ky)
16rAlro3, r4tsio,

Sillimanite (sill)
0 5t6lAlros, 0.5r4lAlro3, r4lsio'

Calcium olivine (caol)
2l6loao, Ia)SiO,

Larnite (larn)
r6rcao, {8tcao, r4lsio,

Gehlenite (geh)
telcao, IslCaO, {4lAlro3, t4lsi02

Akermanite (ak)
IsrCaO, prcao, rarMgo, 2rarsio,

Monticellite (mont)
r6icao, r6lMgo, r4lsio,

Sphene (sph)
rorcao, I6lTiOr, t4lSiO,

Fayalite (fa)
2FeO, t rSiOz

Forsterite (fo)
2t61MgO, rarsi02

Cordierite (crd)
216rMgO, 2r4tAlro3, 5r4lsio,

Tephroite (teph)
216lMnO, tarSiO,

30.27
( 1e.e)f

82.3 1
(-s .1)+

46.82 142.1 1
(_26.8) f

44 98 1 15.6 1
(_2e.8)+

67 .18  159 .0  1
(_2s.8)+

64 59 155.7 2
(_ 14.s)+

60.40 133 5 1

31.69 95.5 l, 3 Merwinite (merw)

44.53 126.2 1

(- 13.4)+
39.78 a0.6 1

18.82 50 3 1

26.s3 43.9 1

Wollastonite (wo)
I6rCaO, SiO,

Calcium Tschermak's pyroxene (cats)
IsrCaO, 0.5t6lAlro", 0.StolAl.O", tnls19,

Diopside (di)
rErcao, 16rMgo, 2r4sio,

Enstatite (en)
lTiMgO, 16rMgO, 2tarsiO,

Rhodonite (rho)
16rMno, r.rsio,

Tremolite (tr)
2l8loaO, 516rMgO, 8t4rsior, Hro(b)

Anorthite (an)
telcaO, IalAlrO3, 2ta1siO,

3telcao, r6lMgo, 2lalsio2
Microcline (micr)

0.5r"rKro, 0.5r4lAlro3, 3r4rsio,
Kaliophilite (kal)

0 5r"lKrO, 0.5l4lAlro3, I4lSi02
Leucite (lc)

0.srbrK2o, 0.5r4rAlro3, 2r4rsio,
Albile (ab)

0 srelNaro, 0.st4rAlroo, 34rSi02

3telcaO, 16rFerO3, 3SiO,

39 93 81.7 10

63.56 135.3 1 1

66.19 142.7 10

62.68 132.5 1 0

35.16 87.6 1
(_ 14.9)+

272.70 549.1

100 79 199.3

98.47 253.1 1

108.72 2't4 2 1

59.89 133.3 1

88.39 184.3 1

100 04 207.4 113.22 44 I
( 14.e)+

16 .76  38 .1

11.25 27.0

25.58 50.9

40.75 92.9
( - 13.4)+

67.88 160.8
(_ 13.4)+

65.92 162 5
(_26.8)+

44.09 82.3

50 03 95.8

59.1 1 120.5

51 .6  127 .6

90.24 198 6

92 54 209.2

51 .48 108 1

s5.65 129.3

46.30 124 2
(_26.8)+

43.66 94.1

23322 407.1

48.61 133 4
( 2e 8)+

'I

1

1

1

1

4

5

o

o

'I

1

1

'I

7

1

I

I

1

I

Nepheline (ne) 54.16 124.4 1
0.5rrrNaro, 0 5rrAlro3, r4tsio,

Muscovite (mu) 140.83 287.7 1
0.srotKro, r6tAlro3, 0 StotAlzoo, 34rsior, Hro(a)

Phlogopite (ph) 149.64 315.9 12
0 slblKro, 3FrMgO, 0.5t1lAl2oo, 3lolsior, HrO(b)

Talc (ta) 136.25 260.8 1
3rrMgo, 4rrsior, Hro(b)

Pyrophyllite (pph) 127.61 299.4 1
16141203, 4r4rsi02, Hro(a)

Anthophyllite (anth) 265.4 537.0 10
2r4MgO, 516rMgO, 8r41SiOr, H,O(b)

Clinochlore (clin) 210.9 397.6 13
516rMgO, 0.5t6tAlzOs, 0 SrntAlzos, 3rrsior, 4Hro(b)

Margarite (ma) 129.60 263.6 't4
telcao, t6lAl2oo, I4rAlrOo, 2l4iSior, Hro(a)

Paragonite (pa) 132.11 277.1 12
0.srerNa2o, 16rA1103, 0.5r4iAlro3, 3r4rsior, Hro(a)

Diaspore (dia) 17 76 35.3 1
0.516141203, 0.5Hro(a)

Gibbsite (gib) 32.03 68.4 1
0.5r6tAlro3, 1 sH,O(a)

Prehnite (pre) 140.26 292.8 14
2lerCaO, 0.516rAlrOs, 0 storAl2o3, 3SiOr, HrO(b)

Chrysotile (chy) 107.46 221 3 1
316rMgO, 2r4tsiOr, 2HrO(a)

zoisite (zo) 135.88 295.9 14
2rrrcao, 1.516rA1203, 3r4isior, 0.5Hro(b)

Almandine(alm) 115.11 299.6 15
3rsrFeo, 16rA1103, 3sio, (_40.1)+

Pyrope (py)  113.18 266.3 j6
3rsrMgo, r6iAlro3, 3sio,

Grossular (gr) 125 35 254.7 17
3tslcao, 16rA1103, 3SiO,

Andradite (andr) 't32.04 286.6 18
(-2e.8)+

. Phase name, abbreviation, and composition. Numbers in brackets represent coordination state (see text)- -  Y,  volume, in cm3.mol ' .

1 S, entropy, in J K 1 mol-,.
+ Entropy corrected by this amount for magnetic and/or other disorder (see text).
$ References: (1) Robie et al., 1979; (2) f_o 9t al., 1977; (3) Anovitz et al., t985; (a) Hasetron et at., 1987; (5) Bohten er at., 1983; (6) Robie and

Hemingway, 1984a; (7)  Sharp et  a l . ,  1986; (8)  Robie et  a l . ,  1982a; (9)  Robie et  at . ,  19.82b;  (10) Krupka et  at . ,  i9B5; (11) Hasetton et  dt . ,  tse+;  1tz;Robie and Hemingway, 1984b; (13)Hen-d-erson et al., 1983; (14) perkins et at., 1980; (15) Bohb; et;t., 1986; itol Has'en6n and Westrum, 1980; i17iPerkins et  a l . ,1977; (18) Robie et  at . ,  1987.

modes, and hence entropies, but some unspecified exter-
nal modes associated with the linking of the polyhedral
units. We must therefore expect the common occurrence
of phases in which the positive entropic effect of smaller
and more rigid polyhedra is offset by the lower rigidity

of the interconnecting framework. Given that the entropy
and other thermodynamic properties are functions of the
average vibrational spectrum, we might expect that the
molar volume should reflect the overall bonding, and
hence vibrational, state of the crystal. In the aluminosil-
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icate example, the entropies of the three polymorphs are
indeed propoftional to their molar volumes.

From the above discussion it is clear that the effects of
cation coordination as well as the volume contribution
must be incorporated into the additivity models for min-
eral entropy estimation, although in many complex sili-
cates it may be impossible to ascribe anomalous entropy
to any one particular structural feature. Any model based
solely on the coordination state and molar volume can
form only a crude guide to the vibrational spectrum, but
as shown below may be sufficiently accurate in predicting
entropies of silicates from a minimum of information.

Some non-lattice-vibrational contributions to entropy

Contributions to the entropy arising from phenomena
other than lattice-vibration effects have been discussed in
considerable detail in the literature, and the interested
reader may turn to the review article by Ulbrich and
Waldbaum (1976) for more detail. For the present pur-
poses, all such contributions to the 298-K entropy must
be removed before looking at the relationship of entropy
with volume, and so terms arising from magnetic as well
as site disordering and possible electronic efects arising
from Jahn-Teller site distortions and other crystal-field
effects must be taken into account.

The site<onfigurational entropy terms involved in, for
example, Al-Si order-disorder on tetrahedral sites, have
been removed from the tabulated entropies, and only the
calorimetric entropies have been used in the following
analysis. Care must be taken when using tabulated entro-
pies; in the tables of Robie et al. (1979), certain phases
have had an arbitrary configurational term added, an ex-
ample being muscovite for which the full -4R[0.75

ln(0.75) + 0.251n(0.25)1, amounting to 18.7 J.K '.mol-',

has been added. It remains a debatable point whether this
is always justified, and in the case of muscovite, the ex-
perimental phase relations are consistent only with a
largely ordered state. Strong short-range order can reduce
the entropy contribution to very small values, and recent
work suggests that (Al,Si) in muscovite is ordered on a
Iocal basis (Herrero et al., 1987).

Magnetic order-disorder transformations at low tem-
peratures are quite common in minerals containing tran-
sition metals and give rise to substantial heat-capacity
anomalies (I peaks) that contribute to the entropy at 298
K. Although the tr anomaly occurs at different tempera-
tures and varies in size in different minerals, the contri-
bution to the entropy is ideally given by S : R ln(2s +
1), where s is the spin quantum number. Thus, for Fe2t,
s is 2 and contributesR ln 5 (13.4 J.K I 'atom t), whereas
for Fe3* and Mn2*, s is 5/2 and so the entropy contribu-
tion becomes R ln 6 (14.9 J.K '.atom '). In the analysis
to follow, these ideal entropies for magnetic disorder have
been subtracted from the phases that have a low-temper-
ature magrretic transformation. The minerals hematite and
magnetite require special comment as they are character-
ized by having their magnetic tr transitions at tempera-
tures well above 298 K, but have long tails to their \
anomalies extending down to temperatures below 298 K;

thus there is likely to be some small contribution to the
entropy arising from the incipient disorder of the mag-
netic spins below 298 K. One way of estimating the mag-
nitude of this contribution is to apply simple Landau the-
ory (for a good mineralogical review ofthe basic concepts,
see Carpenter, 1988) to these magnetic transformations.
Landau theory for tricritical behavior leads to the follow-
ing useful expression for the entropy as a function of tem-
perature below I.:

Su,o. , :  S-"* [ l  -  (1 -  T/7. ) ]

where S-.. is the maximum entropy expected for the
transformation. i.e..

*"^: J" 7 o,
and Cp is the excess heat capacity relative to the fully
ordered phase. It is conventional, in Landau theory, to
take excess properties relative to the disordered, high-
symmetry, phase, whereas the above expressions have
been rearranged according to the more usual petrological
convention. For hematite (7. : 955 K, ,S."* : 2R ln 6),
the entropy contribution at 298 K, from the equation
above, is 5.1 J.K r.mol-r, amounting to l7o/o of the max-
imum entropy that would be gained only at Z: 955 K.
The conclusion is that even though 298 K is well below
?"., the effect of the tail in the tr heat-capacity anomaly is
not negligible, and the value of 5.1 J'K r.mol-r should
be subtracted from the calorimetric entropy of hematite
if one wishes to determine the lattice-vibrational portion
of the entropy. A similar argument for magnetite (2. :

848 K) suggests that the entropy of magnetite should be
decremented by 8.4 J.K-' mol-'to allow for the \ tail
effect. Magnetite still requires a further adjustment of ap-
proximately -2R ln 2 J.K '.mol-' to allow for the dis-
ordering transformation (normal to inverse spinel) that
occurs at 1 15 K.

A further problem is the variable entropy contribution
from transition-metal ions (in this study in FeO, FerOr,
TiOr) due to polyhedral site distortions. The subject has
been discussed by Wood (1981) who showed that crystal-
field effects can be large and important for these cations
under some circumstances. The effects discussed by Wood
should be maximal only at very low temperatures and for
extreme differences in the shape of a distorted and un-
distorted polyhedron; the success of the simple model to
be discussed in the next section implies that at 298 K
these crystal-field terms probably make only a small con-
tribution to the entropy.

Pnoposno ESTTMATToN METHoD AND REsuLTs

Realizing the need to incorporate the efects of both
volume and coordination and the fact that both of these
are only an approximate guide to the vibrational contri-
bution to the specific heat and entropy, one opts for the
simplest possible model-that of Fyfe et al. (1958)-but
allows some components to be represented in several dif-
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s v
Phase. hat meas.

Tlele 2. Results of regression for S - yof phases ferent coordination states: The Fyfe et al. expresslon 1s
recalled as

f : > n J + k ( v j - Z n , v , ) ,

where S, and V, are entropies and volumes of oxide com-
ponents i, present in amount n,, and,!, and V, are the
entropy and volume of the phase j. A certain amount of
experience with measured data has shown that the value
of k is approximately 1.0 if the units of entropy are in J.
K '.mol 'and volumes are in cm3.mol '. A petrological
consequence ofthis is that solid-solid reactions involving
no change in coordination state should have dP/dT: AS/
AZof approximately l0 bar.K-'. An example of such a
reaction might be tremolite + 2 diopside * talc. Unpub-
lished experiments (Jenkins and Holland, in prep.) are in
good agreement with this estimate, which should be rea-
sonable for reactions, such as the one above, that involve
little or no change in coordination. In contrast, reactions
such as jadeite + quartz + albite are driven by larger
entropies, in part due to the increase in coordination state
ofNa and the change from octahedral to tetrahedral co-
ordination of Al, and have somewhat larger dP/dT slopes
(around 20 bars.K-').

The method used here involves rearrangement of the
above equation to the form

S,: kV, + 2n,(5, - kV,),

where the second term on the right is a constant for each
oxide component. The values of the (St - kV,) and k were
determined by least squares from measured entropies of
oxides and silicates, with multiple regression returning k
: 1.00 within error, in pleasing agreement with the sim-
ple harmonic oscillator model. Thus we may drop the
constant k and fit the simpler model, taking S,' to rep-
resent (,S, - 4),

Si: Vt I 2n,5,' ( l)

to the experimentally measured entropies in Table I by
regression. The resulting standard deviation ofthe resid-
uals was 1.77 J'Kr.mol r, and the average absolute de-
viation was l.4l J.K-t.msl-t, with the worst deviation
being 4. I J.K '.mol ' (for tremolite). Table 2 shows the
calculated results and the residuals in entropies for the
phases used, and Table 3 lists the values for the entropies
associated with each oxide component and their uncer-
tainties (lo).

The assignment of the components chosen requires brief
comment. The 6-fold coordination of cations in the ox-
ides AlrOr, MgO, CaO, FeO, TiOr, and MnO are straight-
forward as are tetrahedral coordination for SiOr, AlrO3,
and MgO. In addition it was necessary to consider trrMgO

to represent the slightly larger M2 site in orthopyroxenes
and the M4 site in orthoamphiboles. Similarly, tsrQa6
refers to M2 clinopyroxene and M4 amphibole sites as
well as the Ca in larnite and sphene. I8-'OlCaO represents
Ca in much enlarged sites (e.g., in margarite) andlor those
difficult to define precisely in terms of coordination num-

s v
calc. resid RH ko kE

mt 0.314
hem 0.283
Timt 0.364
CaFt 0.249
DCFI 0.358
acm 0.351
jd 0.712
ilm 0.237
sp 0737
ru 0 379
trid 0 037
mang 0.229
l i m e  0 1 6 1
per 0 071
cor 0 176
herc 0.159
hed 0.137
fs 0.313
ky 0.353
sill 0.230
caol 0.400
larn 0.379
geh 0.208
ak 0.409
mont 0.123
sph 0.298
fa 0.294
fo 0.346
crd 0 502
teph 0.621
wo  0 .170
cats 0.154
di  0 234
en 0 533
rho 0 160
It 0 417
an 0 259
merw 0.478
micr 0.632
kal 0.425
lc 0.315
ab 0.481
ne 0.323
mu 0 530
phl 0.394
ta 0.189
pph 0.348
anth 0.533
clin 0.879
ma 0.240
pa 0.350
dia 0.039
gib 0.258
pre 0.304
chy 0.551
zo 0.377
alm
py
gr
andr

81 .70 81.02 0 68
52.03 50.24 1.79
95.29 94 18 1 .1 1
70.58 72 18 1.60
91 .81  94  13  2 .32
91 .08 88.18 2.90
73.07 74 36 1.29
63.83 63.41 0.42
40.80 41.36 -0 56
31.43 32 63 -1 20
17 .37  17  45  -0  08
31 .59  33  41  1 .82
21.34 21.94 -0 60
15 .70  1575  -0  05
25 35 22 60 2.75
5214 53 37 1.23
92.92 93.0s -0 13
96.54 96 45 0.09
38.21 40.04 -1.83
45.76 43.19 2.57
61 39 61.34 0.05
76.00 72.19 3.81

108 36 108.08 0 28
1  16 .67  1  15 .41  1 .26
56.62 55.14 1 48
77.65 77 .45 0 20
77.94 79.00 -1.06
50.45 48.94 1 51

173.90 1 76.51 -2.61
84.80 84 28 0.52
41.76 39.39 2.37
71 .74 70.56 1 .18
76.51 78.02 -1.51
69.86 71 .71 -  1 85
52.44 50 86 1.58

276.40 280 52 -4 12
98.s1 98.15 0.36

154 60 153 75 0.85
105 48 106.57 1 .09
73 37 71 .67 1.70
95.93 93 32 2.61

107.36 106.53 0.83
70 .19  71 .64  -1  45

146.87 149 08 -2.21
166 30 165 45 0.85
124 54 124.48 0.06
111 79 1 08.1 1 3.68
27't 60 267 90 3.70
186  70  186 .58  0 j 2
134 00 136.46 2.46
145 00 144.84 0.16
17 .55  19 .15  -1 .60
36.48 34.87 1 61

152.50 154.27 -1.77
113 .80  113 .57  0 .23
160.00 158.70 1.30
184.45 184.45 0
153 .12  153  12  0
129.35 1 28.53 0.82
154 .56  156  17  -  1  . 61

1  1 4  1 . 2 8
1 1 2  1 2 6
1 .20  1 .33
1  . 05  1  . 19
0.96 1.08
0.92 1.06

-15.7 0.95 1.09
1 .20  1 .34

-0.8 0.90 1.0s
1 .09 1.23

1.0 0 78 0.89
1 .05 1.45

- 1 .5 0.91 1 .01
4 .2  1 .02  1  . 18
8.5 0 91 1.08

1 1 . 2  1 . 0 0  1 . 1 3
-6 . s  0 .91  1 .04
- 2 . 0  1 . 0 1  1 . 1 5

3.0 0.85 1.01
0.9 0.84 0.98

-6 7 0.83 0.93
3 .0  0 .99  1 .12
6.2 0.90 1.02
0.1 0.92 1.03
2.9 0.87 0.99

0.96 1.08
2.7 1.09 1 22
5.7 0.92 1 06

16.9 0.74 0 85
1 . 1 0  1  2 2

-0.8 0.84 0.95
-3.5 0.91 1.05
-8.0 0.91 1.04

1 2 0.91 1.05
1  . 0 1  1 . 1 4

-21.0 0.86 0.99
0 0.82 0.94

- 1 0  1 0 4  1 . 1 6
- 0 8  0 8 1  0 . 9 1

4.0 0.89 0.99
12.1 0.84 0.94
0 0.86 0.97
2.7 0.93 1.O4
1 .4  0 .87  1 .00
4.4 0 88 1.01

-7 I  0.83 0.97
-3 4 0.82 0.96

5.8 0.87 1.01
-14 2 0.85 0.99
-0 I  0.88 1.03

2.4 0.90 1.04
-0 .3  0 .95  1 .15

3.9 0.99 1 .18
-2.8 0.89 102

9.5 0.90 1 05
4 I  0 .93  1 .07

1 0 5  1 . 0 9  1 . 2 4
-13 .7  1 .01  1 .16

429 0.88 1.O2
0.92 1.05

Nofei Columns (S - y).""" and (S - y)* are measured and catcutated
S - y; resid is the residual in calculated entropy; RH is the equivalent
residual calculated from the tables of Robinson and Haas (1983); ko and
kE are the entropy/volume proportionality constants, defined in the text,
for the Debye and Einstein theories; hat is the diagonal term from the hat
(least-squares projection) matrix (Belsley et al, 1980) and indicates the
influence of each observation on the least-squares solution. with hat : 0
denoting no influence and hat : 1 denoting extreme influence (forcing the
fit through that datum).

. Abbreviations are given in Table 1.
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ber. KrO was partitioned intot"lKrO framework sites such
as in feldspars and feldspathoids, and IolKzO sites such as
in interlayer mica positions (and the large cavity of leu-
cite); thus size and degree ofvibrational freedom seem to
categorize KrO ditrerences. NarO is partitioned into small
t8lNazO as in pyroxene (M2) and amphibole (M4) sites
and large Ie-r2lNa2O as in framework silicates and micas.
HrO was the most difficult parameter to define; in the
end, it was decided to split HrO up into only two cate-
gories for simplicity. Although the nature of the bonding
ofthe proton in hydrous silicates is very variable, it was
found convenient to split mineral structures into a high-
entropy HrO(a) and a low-entropy HrO(b) group. The
micas fall naturally into high-entropy dioctahedral and
low-entropy trioctahedral groups that may be rational-
ized on the basis ofthe distortion ofthe proton position
in dioctahedral micas away from the normal to the mica
sheets; in trioctahedral micas, the three full octahedral
sites repel the proton equally (Bailey, 1984). In diocta-
hedral micas, the vacant M2 site causes the proton to be
deflected largely into the vacant space, allowing for a
greater degree of vibrational freedom. Chlorites are trioc-
tahedral, with talc-like and brucite-like layers in which
there is strong hydrogen bonding of the brucite hydroxyl
groups to the talc layer oxygens, and so chlorites are at-
tributed to the HrO(b) group, as are talc, phlogopite, and
the amphiboles. Diaspore, gibbsite, and serpentine are
allocated to the HrO(a) group because of the larger degree
offreedom ofthe OH groups that are not strongly bonded
to tetrahedral layers as in micas or, in the case ofserpen-
tines, because the layer mismatch between the octahedral
and tetrahedral sheets allows more flexibility in the vi-
brational freedom ofthe hydroxyl groups.

It was also found that the large, S-fold coordinated (dis-
torted cube geometry), sites in garnet required separate
evaluation; the entropy contribution from Ca in garnet
re,t(QaO) is less than expected whereas the entropy con-
tributions of iron r",t6eO) and Mg te,r(MgO) are larger. For
Mg, a small ion in a very large and somewhat distorted
cage, the extra entropy is readily rationalized, but the low
entropy for Ca seems anomalous.

To see the efect of ignoring the volume dependence of
the entropy, a regression of the same data was performed
without the volume terms. as done bv Robinson and Haas
(1e83) ,

{: >n,s" (2)

and the results are given in Table 3. The standard devia-
tion of the residuals and the mean absolute deviation of
the residuals were 3.26 and 2.50 J. K'. mol', respective-
ly, about twice the values of the volume-corrected model;
however, the worst deviations were 9.85 J.K-'.mol-'
(larnite), 8.1 J.K-'.mol-' (cordierite), and 7.5 J.K '.mol '

(leucite). Inspection of the results for AlrO, reveals that
with no volume correction, the difference between octa-
hedral and tetrahedral coordination is 28.3 J.K-'.mol-t,
whereas for the volume-corrected model, the difference

Trele 3, Values for use with the entropy models

Component S- Y os,v S Og

trrSiOz
16lAlzOs
torAlzOg
16rMgO
tolMgo
rtrMgo
rs,rMgO
rorCaO
rorcaO
rerolcao
IdlCaO
rsrFeO
rdlFeO
{6rMnO
16lTiOz
t"rFezOg
IolNarO
tg;2tNazO
htKrO
rorK20

H,O(a)
H,O(b)

17.45
22.60
28.89
15 .75
18.77
21 .06
zo.uo
21.94
27.37
34.37
17 .86
30.78
36.50
33 41
32 63
50.24
30.J2

79.49
79.55
87.96
15.71
7.44

0.38
0.84
1 .06
0 5 3
1 7 7
1 3 6
0 8 8
0.80
0.84
0.70
0.67
0.83
0.67
1 .20
1 .54
1 .60
J . O /

3 . 1 2

3.03
0 9 1
o.87

40.30 0.39
43.78 0.84
72.07 1.05
26.67 0.54
38.30 1 77
27.74 1 .35
33.87 0.88
39.59 0.80
38.73 0 81
48.25 0 71
29.47 0.99
43.24 0.83
44.96 0.68
46.28 1.20
51 .94 1.54
80.51 1.61
65.86 4.58
97.28 3 13

1 14.35 3.77
120.37 3.37
30.03 0.91
20.74 1.03

Nofe. The first two columns of data, S y and its uncertainty, refer to
the entropy-volume model, Eq. 1 in the text; the last two columns, S and
its uncertainty, refer to the simple additivity model with no volume correc-
tion. Eo. 2 in the text.

is only 6.3 J'K r'mol r. The volume-independent model
also fits the measured entropies rather better than the
data of Robinson and Haas (1983) and may be useful in
estimating entropies of mineral end-members for which
no reliable volume data arc available.

Appr-rca.rroNs

One of the motivating reasons behind this study was
the need to estimate the entropies for minerals in a more
general project to derive a reliable thermodynamic data
set for petrological calculations. In earlier works (Powell
and Holland, 1985; Holland and Powell, 1985), a prelim-
inary thermodynamic data set was generated and used to
obtain more powerful methods of characterizing meta-
morphic conditions, particularly pressure (Powell and
Holland, 1988). The project is now at an advanced stage,
involving many more mineral end-members and phase-
equilibrium constraints, and has required the estimation
ofentropies ofseveral phases where they were not known.
It is also useful to have reliable entropy estimates for
minerals even if complex thermodynamic calculations are
not required, for instance when determining approximate
slopes ofunivariant reactions from the Clausius-Clapey-
ron equation. The entropies for a number of rock-form-
ing mineral end-members of interest are presented (Table
4), using the methods outlined above. Because it appears
that magnetic transitions in silicate minerals tend to oc-
cur at very low temperatures, the tabulated entropies in-
clude the ideal magnetic contributions. It should be re-
emphasized, however, that site<onfigurational entropy
terms have been omitted, as the degree of order in most
silicates is at present poorly constrained. It is left to the
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TABLE 4. Predicted entropies for unmeasured mineral end-members

Y S t o "
(cm3 mol ,) (J K ' mol t) (J K 1.mol 1)

Johannsenite
Mg-Tschermak's pyroxene
Tschermakite
Endenite
Pargasite
Cummingtonite
Grunerite
Ferropargasite
Ferroactinolite
Glaucophane
Ferroglaucophane
Riebeckite
Magnesioiriebeckite

Mg-celadonite.
Eastonite
Annite
Siderophyllite
Manganophyllite
Na-phlogopite-
Amesite
Daphnite
Mn-clinochlore.
Tschermak's talc.
Minnesotaite
Mn-talc.
Mg-chloritoid.
Fe-chloritoid.
Mn-chloritoid.

Mg-staurolite'
Fe-staurolite.
Mn-staurolite.
Mg-carpholite-
Fe-carpholite.
Mn-carpholite.
Sapphirine
Mg-pumpellyite-
Vesuvianite
Fe-cordierite.
Mn-cordierite.
Deerite

Chain silicates
179
123
R e r

588
582
533
734
703
705
534
624
691
602

Sheet silicates
288
306
405
JOC

421
306
388
542
568
250
358
373
132
162
167

Others
885
993

1 0 1 3
194
223
229
790
629

2008
470
483

1 531

CaMnSir06
MgAl(SiAl)O6
CarM g3Alr(Si6Alr)Orr(OH),
NaCarM95(Si?Al)Orr(OH),
NaCarM g4Al(Si6Alr)Orr(OH),
MgTSi.Orr(OH),
Fe?SiBOrr(OH),
NaCarFe4Al(Si6Al,)Oz(OH),
CarFesSisOrlOH),
NarMg3AlrSisOrr(OH),
NarFeoAlrSisOrlOH),
NarFeoFerSioOrr(OH),
NarMgsFerSi6Oz(OH),

KMgAI(Sil)O,o(OH),
KM grAl(SirAlr)Oro(OH),
KFe3(Si3Al)O,o(OH),
KFe,Al(Si,Al,)Oa(OH),
KMns(SioAl)O,o(OH),
NaM93(Si3Al)O,o(OH),
M glAlr(AlrSir)O,o(OH)s
FesAl(AlSia)Olo(OH)s
MnsAl(AlSi3)Oio(OH)s
Mg,Al(Si3Al)O,o(OH),
Fe3(Si4)Oio(OH),
Mn3(Si4)O1o(OH),
MgAlrSiOs(OH),
FeAl,SiOs(OH),
MnAl,Si05(OH),

Mg4Al,sSi750€H4
FelAlrsSiT 5O4oH4
MniAlloSiz s046H4
MgAl,Si,O6(OH)4
FeAl,Si,O6(OH)4
MnAlrSirO6(OH)4
Mg6(M gAl)AlB(Al,Sia)O@
CalAl5MgSi60rl(OHD
CaleMgrAlll SirsO6r(OH)e
Fe2Al4SisO1,
MnrAl4SisOlo
Fe?t Fe8+ Sil,O4o(OH)10

68 1
58.9

265.3
270.9
272.4
264.7
278.0
279.4
282.8
260.5
265 I
274 I
271 .3

139.7
147.5
154 .3
150 .5
157  I
144.5
209.2
213.4
219 .0
132.9
147 .9
150  5
68.8
6 9 8
71  0

442.6
448.8
452.2
105 .9
106 .9
108 .2
395.7
295.5
852.0
237.1
241.2
559.5

4

4

7
5
b

5
o
o
o

2
2
2

3
4
3
4
o

2
3
2

2
2
2

'11
9

1 0
2

1 6

4
1 2

Notei Entropies calculated from the entropy-volume model with no provision for Mg-Al or Si-Al disorder; however, the ideal magnetic entropy
contribution has been added, on the assumption that transition metal-bearing silicates undergo tow-temperature magnetic transitions.. Names with elemental prefixes are not valid mineral names but represent idealized end-member (standard state) compositions in thermodynamic
calculations.

user's judgement (or prejudice!) to add an appropriate
entropy for disorder.

As a worked example, an estimation is made of the
entropy of carpholite, MnAl,SirOu(OH)", for which the
volume is 108.2 cm3.mol-r. All the Al is in octahedral
coordination, and it is assumed that the HrO is nonnal,
i.e., like the trioctahedral micas. Thus, from Table 3, and
Equation (l),

Scaryr,orit" : V.u,phorit + (,S - V)*"o * (S - Z)tuto,ro,
+ 2(,S - V)",o, t 2(,S - Z)H,o(b)
:  108.9 + 33.4t  + 22.60 + 2( t7.45)
+ 2(7.44)
:214.7 * magnelic term.

Finally, one must add the ideal magnetic contribution for
Mn2*, of R ln 6, to yield S :229 + , r." ,.-o1-t, the
value given in Table 4.

CoNcr,usroNs

The old concept of additivity of oxide components with
a volume correction to yield estimates of mineral entro-
pies is a useful one and has been improved upon by con-
sideration of variable coordination states of cations in
mineral structures. The proportionality constant in the
entropy expression to allow for the volume efect has been
found to be 1.0 if units of J, K, cm3, and mol are used,
and this value is in excellent agreement with predictions
from the behavior of simple Einstein and Debye solids.

The entropies of silicate and multiple oxide phases may
be estimated with uncertainties of about +2 to +3
J.K-'.mol-' for most materials, but with slightly larger
uncertainties (+3 to +6 J'K-''mol-t) for phases contain-
ing transition-metal ions. These uncertainties are lower
than for any other simple method of estimation and in
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many cases are not much larger than the experimental
uncertainties themselves. In conclusion, molar volume
should be viewed as a reliable monitor of the average
bonding and vibrational state of minerals, a quality that
makes molar volume useful in estimating entropies.
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